Amrita Basu, PhD

Assistant Adjunct Professor
M_Surgery

Development of computational models for early detection of cancer lesions and progression to metastatic disease can help discriminate between high and low cancer risk profiles. Therefore, we seek to exploit diverse, high-throughput genomic and clinical data to understand the molecular networks underlying fundamental cellular processes that can eventually stratify patients by non-traditional underpinnings, including transcriptional regulation, epigenetic signaling, and chemosensitivity. Our algorithmic methods draw on machine learning, a computational field concerned with learning accurate, predictive models from noisy and high-dimensional data.

Another area of research includes developing standardized methods and measures to integrate drug toxicity, quality of life, and efficacy measures for breast cancer patients. We are building infrastructure and tools to support patient-reported outcomes collection and downstream analysis and visualization.

Publications

Outcomes and clinicopathologic characteristics associated with disseminated tumor cells in bone marrow after neoadjuvant chemotherapy in high-risk early stage breast cancer: the I-SPY SURMOUNT study.

Breast cancer research and treatment

Magbanua MJM, van 't Veer L, Clark AS, Chien AJ, Boughey JC, Han HS, Wallace A, Beckwith H, Liu MC, Yau C, Wileyto EP, Ordonez A, Solanki TI, Hsiao F, Lee JC, Basu A, Brown Swigart L, Perlmutter J, Delson AL, Bayne L, Deluca S, Yee SS, Carpenter EL, Esserman LJ, Park JW, Chodosh LA, DeMichele A

Redefining breast cancer subtypes to guide treatment prioritization and maximize response: Predictive biomarkers across 10 cancer therapies.

Cancer cell

Wolf DM, Yau C, Wulfkuhle J, Brown-Swigart L, Gallagher IR, Lee PRE, Zhu Z, Magbanua MJ, Sayaman R, O'Grady N, Basu A, Delson A, Coppé JP, Lu R, Braun J, I-SPY2 Investigators, Asare SM, Sit L, Matthews JB, Perlmutter J, Hylton N, Liu MC, Pohlmann P, Symmans WF, Rugo HS, Isaacs C, DeMichele AM, Yee D, Berry DA, Pusztai L, Petricoin EF, Hirst GL, Esserman LJ, van 't Veer LJ

Treatment Efficacy Score - continuous residual cancer burden-based metric to compare neoadjuvant chemotherapy efficacy between randomized trial arms in breast cancer trials.

Annals of oncology : official journal of the European Society for Medical Oncology

Marczyk M, Mrukwa A, Yau C, Wolf D, Chen YY, Balassanian R, Nanda R, Parker BA, Krings G, Sattar H, Zeck JC, Albain KS, Boughey JC, Liu MC, Elias AD, Clark AS, Venters SJ, Shad S, Basu A, Asare SM, Buxton M, Asare AL, Rugo HS, Perlmutter J, DeMichele AM, Yee D, Berry DA, van 't Veer L, Symmans WF, Esserman L, Pusztai L, I-SPY Consortium